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The steady state velocity equation for a bireactant enzyme in the presence of a partial inhibitor 
or nonessential activator, M, contains squared substrate concentration and higher-ordered M 
concentration terms. The equation is too complex to be useful in kinetic analyses. Simplification 
by the method of Cha (J .  Biol. Chem. 243, 820-825 (1968)) eliminates squared substrate con- 
centration terms, but retains higher-ordered terms in [MI. It is shown that if strict equilibrium is 
assumed between free E, M, and EM and for all but one other M-binding reaction, a velocity 
equation is obtained for an ordered bireactant enzyme that is first degree in all ligands in the 
absence of products. The equation is an approximation (because it was derived assuming only 
one M-binding reaction in the steady state), but it contains five inhibition (or activation) con- 
stants associated with M, all of which can be obtained by diagnostic replots and/or curve-fitting 
procedures. The equation also provides a framework for obtaining limiting constants ( Vkax, 
KA, KAA, KAB) that characterize the enzyme at saturating M. The same approach is applicable 
to an enzyme that catalyzes a steady state ping pong reaction. 

Keywords: Inhibition, partial; Activation, nonessential; Bireactant mechanisms, 
partial inhibition in; Kinetics of partial systems; Hyperbolic effectors; 
Modifier, general mechanism kinetics 

INTRODUCTION 

Enzyme inhibitors, I, can be divided into two broad classes: those that drive 
the reaction rate toward zero as [I]+w, and those that drive the rate 

* Corresponding author. Tel.: 530-752-3193. Fax: 530-752-3085. 
E-mail: ihsegel@ucdavis.edu. 
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312 W. DEWOLF JR. AND I.H. SEGEL 

toward some finite limit as [I]  + x. The former are called complete inhibi- 
tors and if only one molecule of inhibitor binds per molecule of enzyme (the 
classical case), the diagnostic slope andjor I/v-axis intercept replot of the 
primary double reciprocal plots will be linear. (The primary plots are l / v  
versus l/[S] at  different fixed levels of I.) Consequently, such inhibitors are 
also called linear inhibitors. Inhibitors that drive the reaction to a finite limit 
are called partial or hyperbolic inhibitors, the term “hyperbolic” referring to 
the shape of the diagnostic replots. Activators can also be divided into two 
classes: essential (which are absolutely necessary for the reaction to proceed) 
and nonessential. An essential activator can usually be treated as if it were a 
cosubstrate. Nonessential activators are kinetically similar to partial inhibi- 
tors, except that the effects are in the opposite direction. (There is a finite 
velocity in the absence of the activator and the velocity rises to a finite higher 
limit as the activator -+ x; slope andjor intercept replots are hyperbolic 
functions of the activator concentration.) Methods for analyzing the effects 
of linear inhibitors and essential activators on bireactant enzymes that fol- 
low steady state kinetics are well known. ’-’ However, investigators evaluat- 
ing the kinetics of partial inhibition and nonessential activation usually 
resort to the assumption that the enzyme is unireactant4-’* As a result, the 
number of inhibition or activation constants that can be obtained is reduced 
and most of the experimental constants are only apparent ones which 
depend on an arbitrarily-chosen concentration of the cosubstrate. The rea- 
son for the assumption of unireactivity is that a steady state treatment of 
bireactant enzymes in the presence of a partial effector produces velocity 
equations that are too complex to be useful for either curve fitting or anal- 
yses by means of diagnostic plots. In this report, we suggest simplifying 
assumptions that yield useful equations for the partial effector (“general 
modifier”) mechanism as applied to common steady state bisubstrate 
reactions. ** 

METHODS 

Most mathematical manipulations were performed on a Power Macintosh 
7500/100 or 8500/300. Simultaneous equations were solved with Mathcad 

**This analysis does not include the kinetic effects of an alternative substrate which can 
behave as  a partial effector when present together with the “normal” substrate if v is taken as 
the rate of common product formation. 

Jo
ur

na
l o

f 
E

nz
ym

e 
In

hi
bi

tio
n 

an
d 

M
ed

ic
in

al
 C

he
m

is
tr

y 
D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
H

IN
A

R
I 

on
 1

2/
18

/1
1

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.



PARTIAL INHIBITION AND NONESSENTIAL ACTIVATION 313 

PLUS, version 6 .  Microsoft Excel 4.0 was used for simulation calculations. 
Curve fits were performed using DeltaGraph 4.0%. 

REACTION SCHEME AND STEADY STATE EQUATIONS 

Ordered Bi Bi Mechanism 

To illustrate the consequences of different simplifying assumptions, consider 
a steady state compulsory ordered bi bi sequence. The reactions that occur 
in the presence of a partial effector, M, that binds to all enzyme species are 
shown in Figure 1. 

Clearly, M must bind at a site that does not include or overlap the cata- 
lytic site. The effect of M is to establish an alternative path for the binding 
of substrates A and B, catalysis, and the release of products P and Q. The 
parallel paths (shown horizontally) are linked by reversible M-binding reac- 
tions (shown vertically). Modifier M can act as a partial inhibitor or as a 

F C JRE 1 Reaction scheme for a steady state ordered bi bi reaction in the presence of an 
effector that binds to all enzyme species. The terms above and below the double arrows indi- 
cate the rate constant and ligand requirements for the reaction. For simplicity, the catalytic 
step EAB % EPQ is not explicitly shown, i.e., EAB represents EAB + EPQ. This omission 
has no effect on the final velocity equation. (It just means that some rate constants are 
actually composite constants. For example, ks and k15 account for catalysis plus the release of 
P. Similarly, k6 and k16 account for the addition of P plus catalysis in the reverse direction.) 
Some of the rate constants for M addition and dissociation are indicated simply as k f  and k,. 
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313 W .  DEWOLF J R .  AND I.H. SEGEL 

nonessential activator depending on whether the M-dependent path is faster 
or slower than the path without M at some fixed [A] and [B]. Under steady 
state conditions, the concentrations of all enzyme species remain constant as 
substrates A and B are converted to products P and Q. The equations 
describing this situation in the absence of products are shown below. (The k,  
and k f  terms are not numbered because they will not appear in the final 
equation.) 

d[E] 
-- - 0 ... kl[EA] + k,[EQ] + kr[EM] = kf[E][M] + kl[E][A] ( 1 )  dl 

d[EA] 
dt 
- == 0 ... kl[E][A] + kj[EAB] + klo[EMA] 

= kg[EA][M] + k3[EA][B] + k?[EA] (2) 

d[EAB] 
dt 

-- - 0 :. k3[EA][B] + kr[EMAB] 

= kt.[EAB][M] + kd[EAB] + kj[EAB] ( 3 )  

(4) d[Eai = 0 :.k5[EAB] + k,[EMQ] = kr[EQ][M] + k7[EQ] 
dt 

d[EM] 
dt 
- = 0 ... kl?[EMA] t k17[EMQ] + kf[E][M] 

= kr[EM] + kll[EM][A] ( 5 )  

d[EMA] 
-- - 0 

dt  
... kll[EM][A] + X-II[EMAB] + kg[EA][M] 

= klo[EMA] + kl?[EMA][B] + kl?[EMA] (6) 

d[EMAB] 
dt 

= 0 ... kl3[EMA][B] + kf[EAB][M] 

= I\.,[EMAB] t lil5[EMAB] + klj[EMAB] ( 7 )  

and 

!El, = [El + [EA] + [EAB] + [EQ] + [EM] + [EMA] + [EMAB] + [EMQ] 

(9) 
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PARTIAL INHIBITION AND NONESSENTIAL ACTIVATION 315 

The above series of simultaneous equations can be solved for the con- 
centrations of all enzyme species. The King-Altman method3.l3 yields [ El, 
[EM], [EMA], etc. in terms of [El,. A computer-assisted solution may do the 
same or yield the concentrations of seven of the species in terms of the 
eighth. The steady state velocity is obtained by substituting the solutions 
into Equation (10): 

The final equation for the forward reaction velocity contains [AI2, [BI2, 
[A][BI2, and [AI2[B] terms along with [MI", [A][M]", [B][M]", [AI2[M]", 
[AI2[B][M]" (etc.) up to n = 4 .  If the system is treated as bi uni with EAB 
producing E + P, the final equation will still contain M terms up to [MI3. 
In either case the equation may be exact, but it is not useful for obtaining 
constants associated with effector M. 

SIMPLIFICATION BY THE QUASI-EQUILIBRIUM 
METHOD OF CHA 

The most common approach to dealing with steady state systems containing 
random sequences (the major cause of the higher powered terms) is to use 
the method of Cha14 to derive the velocity equation. Cha's method assumes 
that one or more reactions within the overall random sequence is at equilib- 
rium. The equilibrium segments are treated as separate entities which are 
linked by nonequilibrium reactions in the steady state. For the ordered 
sequence shown in Figure 1 with all M-binding reactions at equilibrium, E 
plus EM would constitute one equilibrium segment (which is denoted 
as "W"), EA plus EMA would constitute another equilibrium segment 
(denoted "X"), EAB plus EMAB the third equilibrium segment ("Y"), and 
EQ plus EMQ the fourth ("Z"). These segments are interconverted by the 
reactions shown in Figure 2. 

Each k in Figure 2 is the rate constant for a specific reaction. The corre- 
spondingffactor represents the fraction of a given equilibrium segment that 
participates in that reaction. For example, kl is the rate constant for the 
reaction of A with E (of segment W) to form EA (of segment X ) . f l  is the 
fraction of segment W represented by E. Constant k l l  is the rate constant 
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316 W. DEWOLF J R .  A N D  I.H. SEGEL 

(E + EM) (EA + EMA) 

FIGURE 2 Interconversion of the equilibrium M-binding segments in the ordered bi bi 
sequence. The figure could be used as the basic King-Altman figure for determining the con- 
centrations of enzyme species. 

for the reaction of EM with A to form EMA; f ,  I is the fraction of segment 
W represented by EM. Similarly, k2 and .f2 are, respectively, the rate con- 
stant for the dissociation of EA and the fraction of segment X represented 
by EA, while the terms k12 and.f12 describe the dissociation of A from EMA. 
The fractional concentration factors can be obtained from equilibrium con- 
siderations, as shown below forf2 and f12 where Kd = klo/kg. 

and 

The other f factors have the same form. The steady state equations for 
the various segments are written in the usual way, e.g., 
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PARTIAL INHIBITION AND NONESSENTIAL ACTIVATION 317 

Solving the series of steady state equations for W, X, Y, and Z in terms of 
[El, (or solving for W, X, and Y in terms of Z )  and substituting the results 
and theffactors into Equation (14) - 

yields a velocity equation that is first degree in [A] and [B] in the absence of 
products, but still contains various [A][ MI", [ B][M]", and [A][B][ MI" terms 
with n = 1-4. The final equation contains 20 constants associated with M 
(although not all of them may be independent). 

SIMPLIFICATION BY THE STRICT EQUILIBRIUM METHOD 

If there is no indication that higher power [MI terms must be considered 
(e.g., the double reciprocal plots in the presence of M appear to be linear 
with hyperbolic slope and intercept replots), then the alternative approach 
suggested by Segel and Martin" can be used to obtain an equation that is 
first degree in substrate and modifier concentration. This method, like that 
of Cha, assumes equilibrium between certain species, but the equilibrium 
assumption is used differently, viz. to eliminate terms from the steady state 
equations for various enzyme species. That is, if the reaction E + M e EM is 
at equilibrium, then k f [  El[ MI must equal k,[EM] and consequently, these 
two terms will cancel each other when they appear on opposite sides of an 
equation. In order to obtain a first degree equation for the ordered bireac- 
tant mechanism shown in Figure 1, we must assume that the binding of M 
to free E and to any two other species are at equilibrium. We will assume 
that the other two equilibrium reactions are E A B + M k E M A B  and 
EQ + M % EMQ. This eliminates all kf and k,-containing terms except for 
those in the equations for d[EA]/dt = 0 and d[EMA]/dt = 0. The resulting 
steady state equations are the same as if it were assumed that M bound initi- 
ally only to EA (and then distributed into EMAB, EMQ, and EM via the 
reactions of the lower pathway shown in Figure 1). 

Solving the modified Equations (1)-(8) for each speciest and then sub- 
stituting the results into Equation (10) yields (after grouping similar terms) 

+If the method of King and Altman3.I3 is used, the terms for all species will contain either an 
[A] or an [A]' factor when [PI = 0 and [Q] = 0. Consequently, an [A] can be cancelled from all 
terms before or after substitution into Equation (10). 
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318 W. DEWOLF J R .  AND I.H. SEGEL 

Equation (1 5 )  

Defining ratios of coefficients as prescribed by Cleland’.* we obtain a final 
velocity equation that is first degree in all ligands 

The above method does not simply yield the rapid equilibrium counterpart 
of the steady state mechanism. That is, Equation (16) is not the same as that 
for a rapid equilibrium ordered mechanism in the presence of a partial effec- 
tor. (That equation would not contain [B] and [B][M] denominator terms.) 
Actually, Equation (16) has the same form as that for a rapid equilibrium 
random mechanism in which M binds to all species (see Sege13 pp. 293-295). 
This identity was not unexpected because (a) the velocity equations for the 
steady state ordered and rapid equilibrium random mechanisms are iden- 
tical in the absence of M and (b) the presence of M does not change the 
binding order of substrates A and B. 

The limiting kinetic constants in the absence of M are defined as follows: 
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PARTIAL INHIBITION AND NONESSENTIAL ACTIVATION 319 

and 

Note that K2 is equivalent to the M dissociation constant of the EMA com- 
plex. The Principle of Microscopic Reversibility dictates that the product of 
the rate constants in one direction around a series of reactions in a loop 
equals the product of the rate constants in the opposite direction. Conse- 
quently, there may be alternative ways of defining some of the above kinetic 
constants. For example, around the left-most square of Figure 1, 
klk9k12kr = kfkllk10k2. Thus, K 1  = k2k10kll /klk9k12 = k,/kf= the dissocia- 
tion constant of EM. 

The limiting constants V,,,, Kia, K,A, and K,B are determined from ini- 
tial velocity measurements made in the absence of M. We can also define 
limiting constants that describe the mechanism at saturating [MI: 

The rate constant compositions of the limiting kinetic constants (at zero and 
saturating [MI) are unaffected by the choice of the M-binding reaction 
included in the steady state. However, the rate constant compositions of K l  
through K5 depend on the specific assumptions made. For example, if the 
EAB + M * EMAB reaction were the one included in the steady state, then 
none of the K values associated with M would be a simple dissociation con- 
stant. Nevertheless, there would still be five constants associated with M 
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320 W.  DEWOLF JR. AND I.H. SEGEL 

and the relationships between the constants would be the same, as shown 
below: 

and also 

When A is the varied substrate, the velocity equation can be written as 

The 1 v-axis intercept and slope of the l i v  versus 1/[A] plot at different fixed 
concentrations of M and a constant subsaturating level of B are hyperbolic 
functions of [MI: 

When B is the varied substrate: 

Jo
ur

na
l o

f 
E

nz
ym

e 
In

hi
bi

tio
n 

an
d 

M
ed

ic
in

al
 C

he
m

is
tr

y 
D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
H

IN
A

R
I 

on
 1

2/
18

/1
1

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.



PARTIAL INHIBITION A N D  NONESSENTIAL ACTIVATION 32 1 

If the basic constants for substrates A and B are known, all of the kinetic 
constants associated with M can be obtained by a conventional analysis 
based on primary linear plots and secondary and tertiary replots. (A sub- 
stantial number of measurements are necessary, but no more than that 
required to characterize any mechanism involving three ligands.) First, one 
would obtain several sets of l / v  versus l/[A] and l/v versus 1/[B] plots, each 
set composed of the plots at three or four different fixed concentrations of 
M and a constant subsaturating concentration of cosubstrate. Three or four 
more such sets of primary plots, each obtained at a different concentration 
of the “constant” cosubstrate, are also needed. The l/v-axis intercepts and 
slopes of the double reciprocal plots in each set are then replotted as 
l/Aintercept versus 1/[M] and l/Aslope versus l/[M]. If M is a typical par- 
tial inhibitor, A is taken as intercept (or slope) in the presence of M minus 
intercept (or slope) in the absence M. If M is a typical nonessential acti- 
vator, the opposite difference is taken. Each of the l /A replots yields -l/K5 
as the horizontal axis intercept. The inverse of the vertical axis intercepts of 
these replots is then plotted against the reciprocal of the “constant” cosub- 
strate concentration. For example, consider a family of l/v versus 1/[A] 
plots at different fixed [MI and a single constant [B]. The secondary 
l/Aintercept replot is given by 

When l/Aint = 0, 1/[M] = -l/K5. The vertical-axis intercept is equivalent to 
1 /Aint at saturating M and the subsaturating B. As there will be second- 
ary l/Aint versus 1/[M] replots for several other “constant” [B], the recipro- 
cal of the vertical-axis intercepts (denoted Aintmax can be replotted against 
l/[BI: 

With K5 known, K2 and K4 can be calculated from the slope and vertical- 
axis intercept, respectively, of this tertiary replot. 
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The 1;Aslope replots are given by 

This secondary replot also yields - 1 K s  as the horizontal-axis intercept. 
Then, the tertiary Aslope,,, versus 1 I [  B] replot yields K I  and K3: 

With K,,, K n l ~ ,  Vmdx, etc. and K I  through K5 known, all the limiting con- 
stants for saturating M can be calculated. 

Starting instead with families of 1 1’ versus 1 i [  B] plots, the above replot- 
ting procedure yields the same inhibition constants. The relevant equations 
are: 

and 

Soine limiting constants can be obtained directly from the tertiary replots. 
For example. the vertical-axis intercept of Equation (24) is equivalent to 
( l/l’,’,lt,y) - (l/VInax), from which V&,\ can be calculated. The intercept of 
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PARTIAL INHIBITION AND NONESSENTIAL ACTIVATION 323 

the corresponding tertiary Aslope,,, replot (Equation (26)) is equivalent to 
(K&A/Vkax) - (Km*/Vmax). So with V,,,, K,A, and Vkax known, K,!,,A can 
be determined. Similarly, the tertiary Aslope,,, replot of the l/v versus 
1/[B] data (Equation (30)) will provide KAB. 

Instead of (or in addition to) the linear replots described above, curve fits 
to the intercept and slope data can be used to obtain the apparent constants 
at saturating M for different fixed cosubstrate levels. For example, the inter- 
cept replot described by Equation (18) is a hyperbola with a nonzero origin 
(as shown later in Figure 6(b)). The numerical data can be fitted to general 
Equation (3 1): 

where int(-M) is the known intercept at the fixed subsaturating B in the 
absence of M, Amax is the maximum change in the intercept (which will be 
observed when [MI = m), and c is an apparent constant (equivalent to the 
[MI that yields half of the maximum intercept change). It can be shown that 
c = K5. With Amax so determined, the intercept at saturating M and the 
fixed subsaturating B can be calculated as int(-M) + Amax. The intpsatM is 
related to VA,, and KkB as shown by Equation (32) 

A similar curve fit to the slope versus [MI data again gives c = Ks and allows 
the slope of the I / v  versus 1/[A] plot at saturating M and the subsaturating 
B to be determined. This value is related to limiting constants as shown by 
Equation (33) 

The intercepts and slopes of the l / v  versus l/[B] plots at saturating M and 
unsaturating A can be determined in the same way. These are related to lim- 
iting constants as shown below 
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W. DEWOLF JR. AND I.H. SEGEL 

The intercepts and slopes at saturating M can then be replotted against the 
different “constant” 1/[A] or 1/[B] (or further curve-fitted) to yield KLA, K/a, 
KAB, and VA,,. With K5 and the limiting constants at zero and saturating M 
known, K,  through K4 can be calculated. 

Nonessential activation is analyzed in the same manner. The l/Aint and 
l/Aslope replots yield -l/K5 as shown above. For the most common form 
of nonessential activation where the slopes and intercepts decrease with 
increasing [MI, the relative positions of the constants in the difference terms 
of Equations (23) and (25) are reversed e g ,  (K2-K5) instead of (K5-K2), 
( K ,  -K5) instead of (Ks-Ki), etc. Also, the difference terms of Equations 
(24) and (26) have the form (1 -K5/K2) and (1 -K5/K4). The equation analo- 
gous to Equation (3 1) would be intercept = int(-M) - hyperbolic function. 
The limiting Vkax,app would equal int(-M)-Amax. 

If it is feasible to maintain each substrate at a level that is near saturating 
as the other is varied at different [MI, then a shortcut may yield reasonable 
estimates of the constants for M. For example, from Equations (21) and (22) 
we see that at saturating [A], the intercept and slope of the l / v  versus 1/[B] 
plots reduce to: 

and 

(To insure that the [ M]/K1 and [ M]/K3 terms remain insignificant, it may be 
advisable to increase [A] along with [MI. That is, have [A] >> Km* and >> Kid 
plus some constant multiple of [MI.) Replots of ljAint and l/Aslope versus 
1/[M] or computer-assisted curve fitting of the intercepts and slopes to the 
above equations will yield K2, K4, and K5. Similarly, replots or curve fitting 
to the intercept and slope of the l/v versus ]/[A] plots at saturating [B] can 
yield K3, K4, and K5. The remaining constant, K1, can then be assessed from 
the value of a slope at subsaturating cosubstrate. 
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APPLICATION TO OTHER MECHANISMS 

Ping Pong Bi Bi Mechanism 

Figure 3 shows a ping pong mechanism in the presence of a partial inhibitor 
or nonessential activator that binds to all enzyme species. As before, the 
Cha method yields a final equation that is first degree in [A] and [B], but up 
to fourth degree in [MI. However, if it is assumed that any three of the four 
M-binding reactions are at strict equilibrium, we obtain: 

or 

k7 

kl 7 

FIGURE 3 Reaction scheme for a ping pong bi bi reaction in the presence of an effector 
that binds to all enzyme species. The terms above and below the double arrows indicate the 
rate constant and ligand requirements for the reaction. EA and EMA represent, respectively, 
(EA + FP) and (EMA + FMP); EQ and EMQ represent, respectively, (FB + EQ) and 
(FMB + EMQ). 
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and 

where KmA. K,B, and V,;,, are defined in the usual manner and 

CoefA Coefs 
CoefAM CoefgM 

K1 =- . Kz=-. 

CoefAB numl 
, and Kj = ~ 

C ~ ~ ~ A B M  numz Ks = 

Note that the simplified equation contains only four constants associated 
with M.  These inhibition (or activation) constants are related to the other 
limiting constants as shown below: 

Random AB Mechanism 

The simplest way to analyze a random mechanism in the presence of a par- 
tial effector (Figure 4) is to assume that all ligand binding reactions are at  
equili brium.T 

The velocity equation and the relationships between the various kinetic 
constants are identical to those shown earlier for the ordered mechanism, 
except that all K values are simple dissociation constants. The system can be 
analyzed as described by Segel’ (see pp. 293-300). 

SIMULATION 

A velocity equation derived by the strict equilibrium method is an approx- 
imation. Consequently, the inhibition constants obtained by fitting experi- 
mental data to the approximate equation may not correspond to the 
dissociation constants for specific steps.$ Nor do the number of experi- 
mental constants necessarily correspond to the number of M-binding reac- 
tions. Nevertheless, it was of interest to compare the experimental constants 

‘ In the absence of the partial effector. a less restrictive approach is to  assume that only 
the ligands that add to free E are at equilibrium. Then the Cha method can be used to  obtain a 
lirst degree velocity equation.” 

Even if the steady state velocity equation is exact. an experimental inhibition constant may 
not be a simple dissociation constant unless the effector is a dead end inhibitor. 
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EM 

products 

EAB 

products 

FIGURE 4 Reaction scheme for a rapid equilibrium random mechanism in the presence of 
an effector that binds to all enzyme species. All substrate kinetic constants and K ,  through K4 
are simple dissociation constants. 

to actual values. A simulation based on the complete velocity equation for a 
steady state bireactant partial effector mechanism was beyond our compu- 
tational means. But data for a unireactant partial inhibition mechanism 
(Figure 5 )  under steady state conditions could be generated. The steady 
state solutions for the four enzyme species (in the absence of products) are 
shown below. For clarity, only the numerators of the right-hand terms are 
shown. In each case, the denominator, C, equals the sum of the numerators 
of all the species 

[E]/[E], = {k5(k2 + k3)(k7 + k9 f kl0) + k6k9(k2 + k3)[S] 
+ k5k8(k7 + klO)[I])/x 

[ES]/[E], = {kik5(k7 + k9 + kio)[S] + klk6k9[SI2 + k4k6k9[S][I]}/x 
[EI]/[E], = {k4(k2 + k3)(k7 + k9 + klO)[I] + klkS(k7 f klO)[S][I] 

f k4k8(k7 -t k10)[I]2}/x 

[EIS]/[E], = { (k2k4k6 + k3k4k6 + klk5kS)[S][I] + klk6kS[S]2[I] 
f k4k6k8[S][I]2}/x 
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+ E + P  kg - ES 
kl  

k2 
E + S- 

+ + 
M M 

11 

k, IT c 

FIGURE 5 
lations shown in Figure 6 .  M is assumed to be a partial inhibitor. 

Reaction scheme for the unireactant general modifier mechanism. For the simu- 

Velocities were calculated from: 

~ 1' - 

[El, - [El + [ES] + [EI] + [EIS] 
k3[ES] + kio[EIS] 

Because the velocity equation for this mechanism contains terms in [SI2, [II2, 
[SI2[I], and [S][I]2 along with the usual constant, [S], [I], and [S][I] terms, 
some double reciprocal plots for subsaturating I may be curved over a 
broad 1 i [ S ]  range. The curvature may not be noticeable over the narrow range 
plotted although the best fitting straight lines may not intersect at a com- 
mon point. The following criteria were used to assign the rate constants for 
simulations: (a) The values should be in the ranges for real 
(b) In order to avoid rapid equilibrium conditions, k2 could not be >> k3. 
Also, k7 could not be >> klo. Similarly, k9 could not be >> klo  or k7, nor 
could k5 be >> k6[S]. (c) The ratio kIo/k3 should be different from k7/k2 (to 
avoid reduction of the velocity equation to one that is first degree in [S] and 

(d) The constants should be consistent with the Principle of Micro- 
scopic Reversibility: klksk7ks = k4k6k9k2 and also (e) that K&,' = KlK,. 

Figure 6(a) shows the double reciprocal plots for one of the simulations. 
The plots appear to be linear making this system a good candidate for anal- 
ysis by curve fitting to a simplified velocity equation. Assuming that either 
of the I-binding reactions is at equilibrium, the method of Segel and Martin 
yields velocity Equation (42) which is identical to that obtained for rapid 
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7 2.5E-2 - 
0 
I 
5 
a, 2.OE-2 
E 
5 

a 

K 
a, 

1.5E-2 
E 
L 

8 

E 
1.OE-2 

0 

0 
- 
+ 

2 5.OE-3 
2 a 
v) 
a, 
0 
F n  
- 

-5.OE+3 0 5.OE+3 1.5E+4 
- = . "  

-1.5E+4 

1/[S] (M)-l 

6E-7 

a, 4E-7 
Q 
0 
v) 
- 

2E-7 

0 
0 0.001 0.002 0.003 0 0.001 0.002 0.003 

[I1 (MI 111 (MI 

FIGURE 6 Double reciprocal plot and replots for a unireactant partial inhibition mecha- 
nism under steady state conditions. Data were generated from the complete velocity equation 
using the following rate constants: kl = 2 x lo', k2 = 200, k3 = 500, k4 = 4 x lo6, k5 = 200, k6 = 
3 x lo6, k7 = 100, ka = 3 x lo5, kg = 50, klo = 75. Constants k l ,  kd, k6, and k8 are second order 
rate constants with units of M--' x s s l .  Constants k2, k3, k5, k7, ks and klo are first order rate 
constants with units of s-I. All concentrations are plotted in units of molarity. Velocity is 
plotted in terms of s-' (i.e., moles of product formed per mole of enzyme per s). The kinetic 
constants calculated from the assigned rate constants are as follows: Ks (dissociation constant 
of ES) = M, KmS (Michaelis con- 
stant in the absence of I) = 3.5 x M, K& (Michaelis constant at saturating I) = 5.83 x 
10-5M, Ki (dissociation constant of EI)= 5 x lO-*M, K /  (I dissociation constant of ESI= 
1.67 x 10-5M, V,,, (maximum velocity in the absence of I, i.e., k,,)=500s-l, VLaX (maxi- 
mum velocity at saturating I, i.e., &) = 75 s-'. The constants derived from the replots are 
shown within the figure. 

M, KA (S dissociation constant of ESI) = 3.33 x 
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equilibriuni conditions. (This is not a general consequence of the method; 
it is true in the present ca5e only because the systein is unireactant.) 

Ki .  h2 and Ki nre, i n  order, equivalent to K,. ciK,.  and ctK,/B in the alternate 
nomenclature often used for rapid equilibrium systems.' Constants were 
obtained b! curve fitting the generated data to the following equations." 
(Equation (27)  could also be used to obtain the limiting slope and intercept 
,it wurat ing I . )  

(43) 

The right-hand intercept and slope expressions are based on the relation- 
ships b'Llls, = K2 I'llll,r/K3 and KLls = K2Knls/Kl,  

A separate plot of the control data over the [S] range 10-5-10p4M 
yielded the expected KIllS of 3.5 x lop5 M and r/,,, of 500 sp i  (i.e., 500mol 
of product fornied per mole enzyme per s.). The K2 value of 1.4 x lOP4M 
provided by the intercept replot (Figure 6(b)) is close to K: (1.7 x m4 M). 
A second intercept curve-fit returned a VAlaX of 76.3s-', which compares 
well with the true value of 75 s p i ,  Curve fitting the slope replot (Figure 6(c)) 
with Vll,:,\ entered as 500 s p i  yielded Knls = 3.5 x M and KI = 4.4 x 

M. The latter is in reasonable agreement with the value of K,  ( 5  x 
1 0 ~  ' M). A second slope replot with Vl:lllx taken as 7 6 . 2 ~ ~ '  yielded KAls as 
5.6 x lo-' M. in good agreement with the true value of 5.8 x lop5 M. The 
returned K 3  values were 9 x lo-' M (intercept replot) and 4.6 x lop4 M 
(slope replot). Plotting a narrower [ I ]  range (up to a maximum of IO--'M) 

C'tiinc fitting ma! be fiicilitatrd b> substituting a \cry small tinite value for [ I ]  = 0. Entering 
thc  p.rrentlteticn1 tcrms 111 the form ( I  - K l )  ( I  t K?) might also help. 
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and biasing the double reciprocal plots to intersect closer to a common point 
improved the agreement between the slope and intercept replots for K3 with 
little effect on the values of K ,  and K2. However, Vk,, and KkS were 
increased by 10% and 20%, respectively. The cumulative results indicate 
that if the double reciprocal plots appear to be linear, fitting the data to the 
simplified velocity equation gives reasonable values for the kinetic constants. 

DISCUSSION 

The assumption of equilibrium between selected species is an approach that 
is often used to obtain velocity equations that would otherwise contain 
second (and higher) degree concentration terms. When the equilibrium 
approach of ChaI4 is applied to a bireactant partial inhibition or a non- 
essential activation mechanism, [AI2 and [ BI2 terms are eliminated, but 
higher-ordered [MI terms remain. On the other hand, the method of Segel 
and Martin” provides first degree terms for all ligand concentrations. Why 
do the two different methods yield different velocity equations? After all, 
both approaches are based on the assumption of equilibrium for the same 
reactions. The answer is that the two methods use the equilibrium assump- 
tion in different ways. The Cha method assumes equilibrium within a reac- 
tion segment so that multiple substrate-binding species (e.g., E and EM) can 
be treated as a single species in the steady state. In contrast, the method of 
Segel and Martin is based on the concept that there is no net flux through 
reactions that are at equilibrium. That is, the latter approach assumes a strict 
equilibrium in which all EM formed from E + M in the steady state disso- 
ciates back to E + M.T Both approaches are approximations which provide 
experimenters with a way to characterize and report the kinetics of a com- 
plex system in terms of familiar constants. One or the other approaches may 
have an advantage depending on the nature of the mechanism under con- 
sideration. For example, the c h a  method yields a useful first degree equa- 
tion for a random AB mechanism if it is assumed that the first substrate to 
bind in the forward direction is at equilibrium with its binary enzyme com- 
plex2’ The method of Segel and Martin is useless for that system because 
it would eliminate obligatory substrate addition steps and result in a zero 
net reaction velocity. However, in the partial inhibition or nonessential 
activation mechanisms there is no requirement for a net flux through any 

This subtle difference was not appreciated by Segel and Martin” and as a result, they mis- 
takenly concluded that their method and the Cha method yielded the same final first degree 
equation. Varon et al.24 subsequently pointed out the difference. 
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M-binding reaction after the presteady state period. In that case, the strict 
equilibrium method is not only applicable, but preferable because it yields a 
first degree equation containing obtainable constants that characterize the 
kinetic effects of M. Essentially, the final velocity equation is identical to the 
complete equation with all second degree and higher-ordered terms omitted. 
In this respect, the relationship between the complete velocity equation (or 
the Cha-derived equation) and the equation as derived by the method of 
Segel and Martin is similar to the relationship between the complete velocity 
or binding equation for a cooperative oligomer and the Hill equation (see 
Segel' pp. 360-361) - except in the latter case, it is the lower-ordered con- 
centration terms that are omitted. As noted earlier, the final velocity equa- 
tion derived by the strict equilibrium method is the same as that which 
would be obtained if M bound initially only to a single enzyme species. 
Because the same final equation is obtained regardless of which M-binding 
reaction is included in the steady state, separate experiments are needed to 
identify the actual M-containing species. Direct equilibrium or 
inacti! ation protection methods23 (under noncatalytic conditions) can be 
used for this purpose. 
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